Searching for splicing motifs.
نویسنده
چکیده
Intron removal during pre-mRNA splicing in higher eukaryotes requires the accurate identification of the two splice sites at the ends of the exons, or exon definition. The sequences constituting the splice sites provide insufficient information to distinguish true splice sites from the greater number of false splice sites that populate transcripts. Additional information used for exon recognition resides in a large number of positively or negatively acting elements that lie both within exons and in the adjacent introns. The identification of such sequence motifs has progressed rapidly in recent years, such that extensive lists are now available for exonic splicing enhancers and exonic splicing silencers. These motifs have been identified both by empirical experiments and by computational predictions, the validity of the latter being confirmed by experimental verification. Molecular searches have been carried out either by the selection of sequences that bind to splicing factors, or enhance or silence splicing in vitro or in vivo. Computational methods have focused on sequences of 6 or 8 nucleotides that are over- or under-represented in exons, compared to introns or transcripts that do not undergo splicing. These various methods have sought to provide global definitions of motifs, yet the motifs are distinctive to the method used for identification and display little overlap. Astonishingly, at least three-quarters of a typical mRNA would be comprised of these motifs. A present challenge lies in understanding how the cell integrates this surfeit of information to generate what is usually a binary splicing decision.
منابع مشابه
Regions of extreme synonymous codon selection in mammalian genes
Recently there has been increasing evidence that purifying selection occurs among synonymous codons in mammalian genes. This selection appears to be a consequence of either cis-regulatory motifs, such as exonic splicing enhancers (ESEs), or mRNA secondary structures, being superimposed on the coding sequence of the gene. We have developed a program to identify regions likely to be enriched for ...
متن کاملConserved modularity and potential for alternate splicing in mouse and human Slit genes.
The vertebrate Slit gene family currently consists of three members; Slit1, Slit2 and Slit3. Each gene encodes a protein containing multiple epidermal growth factor and leucine rich repeat motifs, which are likely to have importance in cell-cell interactions. In this study, we sought to fully define and characterise the vertebrate Slit gene family. Using long distance PCR coupled with in silico...
متن کاملThe CUGBP2 Splicing Factor Regulates an Ensemble of Branchpoints from Perimeter Binding Sites with Implications for Autoregulation
Alternative pre-mRNA splicing adjusts the transcriptional output of the genome by generating related mRNAs from a single primary transcript, thereby expanding protein diversity. A fundamental unanswered question is how splicing factors achieve specificity in the selection of target substrates despite the recognition of information-poor sequence motifs. The CUGBP2 splicing regulator plays a key ...
متن کاملPre-mRNA Secondary Structures Influence Exon Recognition
The secondary structure of a pre-mRNA influences a number of processing steps including alternative splicing. Since most splicing regulatory proteins bind to single-stranded RNA, the sequestration of RNA into double strands could prevent their binding. Here, we analyzed the secondary structure context of experimentally determined splicing enhancer and silencer motifs in their natural pre-mRNA c...
متن کاملA network of conserved co-occurring motifs for the regulation of alternative splicing
Cis-acting short sequence motifs play important roles in alternative splicing. It is now possible to identify such sequence motifs as conserved sequence patterns in genome sequence alignments. Here, we report the systematic search for motifs in the neighboring introns of alternatively spliced exons by using comparative analysis of mammalian genome alignments. We identified 11 conserved sequence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in experimental medicine and biology
دوره 623 شماره
صفحات -
تاریخ انتشار 2007